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ABSTRACT: The paper presents an application of the novel methodology for the assessment
of structures using a semi-probabilistic approach exploiting advanced probabilistic modeling and
experimental results. The selected existing bridge is represented by a costly finite element model,
which reflects the non-linearity of concrete and the construction process. Due to a significant com-
putational burden of each simulation, it is not feasible to perform a Monte Carlo simulation and
a semi-probabilistic approach was thus adopted. In this study, we investigate the possibility of a
Gram-Charlier expansion described by the first four central moments efficiently obtained directly
from Polynomial Chaos Expansion metamodel together with the uncertainty quantification of
input random variables described by a joint probability distribution obtained from experimental
data combined with prior assumptions from codes. Obtained results are compared to the standard
approach assuming a Lognormal probability distribution of structural resistance.
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1 INTRODUCTION

Mathematical models of real structures, e.g. bridges, are typically analyzed by computation-
ally expensive non-linear finite element method (NLFEM) reflecting material and geometrical
non-linearity. Non-linear models are not compatible with standard partial safety factors (PSF)
implemented in Eurocode (CEN 2002) and advanced probabilistic methods should be employed.
Nonetheless, standard probabilistic design or assessment of structures represented by computa-
tional models solved by NLFEM is extremely time-consuming and it is usually necessary to use
semi-probabilistic methods developed for NLFEM. The paper focuses on the semi-probabilistic
assessment of concrete structures using simplified methods.

In the semi-probabilistic approach (Val et al. 1997, Novák & Novák 2021), the resistance of
structure R is separated (similarly is in PSF by sensitivity factor α), and the design value Rd that
satisfies safety requirements is evaluated, instead of the direct calculation of failure probability.
The whole process represents the estimation of a quantile satisfying the given safety require-
ments under the prescribed simplifying assumptions. The given task is thus simplified to statistical
analysis of target probability distribution of resistance (output of the model) – its mean value µ,
coefficient of variation (CoV) etc. Safety requirements are given by codes in form of the target
reliability index β dependent on consequence classes, e.g. β for the ultimate limit state, moderate
consequences of failure and a reference period of 50 years is set at β = 3.8 according to the
Eurocode 1990 (CEN 2002). In this paper, we investigate the role of simplifying assumptions
regarding the probability distribution of input variables and resistance (output variable).

The procedure is a combination of the following steps:



• development of NLFEM finite element model of structure (high-fidelity model, computation-
ally very expensive);

• stochastic model based on prior knowledge for input random variables;
• Bayesian approach - based on experimental data updating statistics of input random variables;
• development of surrogate model using Polynomial Chaos Expansion (PCE – low fidelity model,

computationally cheap);
• determination of design value of resistance based on statistical moments of resistance directly

obtained form PCE or estimated by Monte Carlo using surrogate model using Gram-Charlier
expansion.

2 ASSUMPTIONS IN SEMI-PROBABILISTIC APPROACH

Existing simplified semi-probabilistic methods were developed for an estimation of CoV using
very low number of samples (ECoV methods), e.g. ECoV by Červenka (Červenka 2013), Taylor
Series Expansion (Novák & Novák 2020) or recently developed Eigen ECoV (Novák & Novák
2021). These methods are based on very strict assumptions, which allow to use simple formulas
together with a few numerical simulations (e.g. 2 for ECoV by Červenka or 3 for Eigen ECoV)
for an estimation of the first two statistical moments. The mean value µ and variance σ2 are
further used to describe an assumed 2-parametric probability distribution of resistance, typically
Lognormal distribution or Gaussian distribution. However, this paper presents methodology for
semi-probabilistic approach for medium-size experimental design (ED) 10-100 samples. In that
case, it is possible to construct a surrogate model sufficiently accurate for an estimation of higher
statistical moments. Additionally it will be shown that it is beneficial to use Bayesian updat-
ing of input variables to estimate a realistic Rd incorporating real data obtained from material
experiments for input random variables.

2.1 Standard approach

The standard formula for the estimation of Rd, assuming a Lognormal distribution of R, is

Rd = µR · exp(−αRβvR), (1)

where µR is the mean value, vR is the coefficient of variation (CoV) and αR represents sensitivity
factor derived from First Order Reliability Method (FORM); the recommended value is αR = 0.8
according to Eurocode 1990 (CEN 2002). In this case, it is necessary to estimate only the first two
statistical moments µ and σ2. Estimation of statistical moments using ECoV methods is based
on numerical simulations with specific quantile of input random variables, e.g. mean values and
characteristic values of material parameters. Although such an approach is extremely efficient,
it is also very limited to assumed Lognormal distribution of resistance. There are many studies
investigating this approach and comparing various ECoV methods (Schlune et al. 2011, Bagge
2020, Novák et al. 2022). Although ECoV methods are well-suited for extremely computational
expensive numerical models, their limitations could lead to inaccurate results as probability distri-
bution of resistance can differ from Lognormal distribution significantly in some cases (eg. high
non-linearity). Thus the further paragraphs describe a methodology based on Polynomial Chaos
and Gram-Charlier Expansions used for estimation of higher statistical moments and construction
of an artificial probability distribution for structural resistance.

2.2 Polynomial Chaos and Gram-Charlier Expansions

An approximation of cumulative distribution function (CDF) FR of structural resistance R by
Gram-Charlier expansion (G-C) is a completely determined by the first four statistical moments
obtained here efficiently from Polynomial Chaos Expansion (PCE). Asssuming that it is possible
to write probability distribution of R as a perturbation of Gaussian Gaussian probability distribu-
tion function (PDF) ϕ. Once the R is normalized to be zero-mean and unit-variance, it is possible
to write the Gram-Charlier approximation of CDF in the terms of its higher central moments
(skewness γY and kurtosis κY ) as:
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where Hn(r) are probabilists’ Hermite polynomials of n-th order and Φ(r) represents standard
Gaussian CDF.

It is typically not feasible to get higher statistical moments by crude Monte Carlo simulation
due to its computational demands, moreover the moments estimated from samples are highly
sensitive to outliers. Fortunately, it is possible to get statistical moments analytically in case of
PCE, which represents the output variable R as a function gPCE of an another random variable
ξ called the germ with given distribution and representing the original computational model R =
g(X) via polynomial expansion. A set of polynomials, orthonormal with respect to the probability
distribution of the germ, are used as a basis of the Hilbert space of all real-valued random variables
of finite variance. In the case of X and ξ being vectors containing M random variables, the
polynomial Ψ(ξ) is multivariate and it is built up as a tensor product of univariate orthogonal
polynomials:

R = g(X) =
∑

α∈NM

βαΨα(ξ), (3)

where α ∈ NM is a set of integers called the multi-index corresponding to polynomial orders in
each term of PCE, βα are deterministic coefficients and Ψα are multivariate orthogonal polyno-
mials. Coefficients βα can be usually obtained by ordinary least squares.

Once a PCE approximation is created, it is possible to obtain statistical moments of R ana-
lytically, which represents an enormous advantage with respect to this study, as will be shown
in computationally expensive numerical example. Specifically, the first statistical moment (mean
value) is equal to the first deterministic coefficient of the expansion

µR =
〈
Y 1

〉
= β0. (4)

Further the variance σ2
Y =

〈
Y 2

〉
− µ2

Y is obtained as a sum of all squared deterministic
coefficients except the intercept, which represents the mean value:

σ2
R =

∑
α∈A
α ̸=0

β2
α. (5)

Higher statistical central moments, skewness γR (3rd moment) and kurtosis κR (4th moment), can
be similarly obtained analytically for Legendre and Hermite polynomials (Novák 2022).

2.3 Bayesian Approach

Given some experimental data D for input model parameters, a parameterized model for the data
(likelihood function) p(D|θ), and a prior probability density p(θ) for the model parameters, the
posterior probability density function (PDF) p(θ|D) of the model can be identified by Bayesian
theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (6)

Although Bayes’ rule looks simple, its efficient evaluation is still challenging and it must be cal-
culated numerically, and thus Markov Chain Monte Carlo sampling (MCMC) is employed in this
paper. For numerical calculation, we use existing algorithm implemented in UQPy package for
Python (Olivier et al. 2020). Such an approach allows updating prior knowledge about the mate-
rial characteristics (Rózsás 2022). In this study, Bayesian approach is employed for updating of
materials’ statistics (mean and variance) obtained from codes combining prior knowledge and
results obtained from laboratory experiments. Obtained updated statistics of input random vari-
ables together with prescribed probability distribution function were further used in Monte Carlo
simulation using surrogate model in form of PCE. Note that evaluation of PCE is very fast even
for very large number of simulations used for estimation of higher statistical moments. Estimated
statistical moments were ultimately used for G-C expansion and an estimation of Rd as described
in section 2.2.



3 NUMERICAL APPLICATION: POST-TENSIONED CONCRETE BRIDGE

The proposed methodology is applied for the existing post-tensioned concrete bridge with three
spans. The super-structure of the mid-span anayzed by NLFEM is 19.98 m long with total width
16.60 m. In transverse direction, each span is constructed from 16 prefabricated bridge gird-
ers KA-61 commonly used in Czech Republic. Load is applied according to national annex of
Eurocode for load-bearing capacity of road bridges by exclusive loading (by six-axial truck).

3.1 Finite Element Model

The numerical model is created in software ATENA Science based on theory of non-linear fracture
mechanics (Červenka & Papanikolaou 2008). In order to reflect complex behavior of the bridge,
the numerical model contains three construction phases as illustrated in Fig.1. The NLFEM con-
sists of 13,000 elements of hexahedra type in the major part of the volume and triangular ‘PRISM’
elements in the part with complicated geometry. Reinforcement and prestressing tendons are
represented by discrete 1D elements with geometry according to original documentation. The
numerical model is further analysed in order to investigate the ultimate limit state (ULS) (peak
of a load-deflection diagram) in order to determine the load-bearing capacity of the bridge. Load-
deflection diagram from simulation using mean values of input random variables can be seen in
Fig. 2 together with typical crack pattern and highlighted 3 limit states: decompression, the first
occurrence of cracks and ULS represented by collapse of the bridge.

Figure 1. Three construction phases of the bridge mid-span analysed by NLFEM.

3.2 Stochastic Model

The stochastic model contains 4 random material parameters of concrete C50/60: Young’s mod-
ulus E ; compressive strength of concrete fc; tensile strength of concrete fct and fracture energy
Gf . Characteristic values of E, fct, Gf were determined from fc according to formulas imple-
mented in the fib Model Code 2010 (fib 2013) – Gf , E, and prEN 1992-1-1: 2021 (CEN 2021)
– fct. The last random variable P represents prestressing losses according to JCSS: Probabilistic
Model Code (JCSS 2001). The stochastic model is summarized in Tab. 1. Mean values and coeffi-
cients the of variation were obtained according to prEN 1992-1-1: 2021 (Annex A) for adjustment
of partial factors for materials. Statistical correlation among randome variables was not considered
in this study.

3.3 Results

Once the stochastic model was defined and computational model was developed in ATENA
Science, it was possible to create 30 realizations of input random vector generated by Latin Hyper-
cube Sampling (Iman & Conover 1980, Novák et al. 2014, 2022), which covers the whole design
domain, and thus it is suitable technique for construction of ED for surrogate modeling. Note that



Table 1. Stochastic model of the numerical
example.

Var. Mean CoV [%] Distrib. Units
fc 56 16 Lognormal [MPa]
fct 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
Gf 195 22 Lognormal [Jm2]
P 20 30 Normal [%]

each simulation takes approximately 24 hours using standard hardware. The PCE is created with
maximum polynomial order p = 5. The whole algorithm of adaptive construction of PCE connect-
ing state of art techniques into stand-alone software tool can be found in (Novák & Novák 2018).
The design values of resistance Rd are determined as a quantile of distribution of R with identified
statistical moments and target reliability indices βULS = 3.8 according to EN 1990. Addition-
ally, design values are reduced by global safety factor reflecting model uncertainties γRd

= 1.06
introduced originally in fib Model Code 2010. Note that we compare three design values obtained
by described semi-probabilistic approach: i) standard approach assuming Lognormal distribution
of R parameterized by the first two statistical moments obtained by PCE; ii) Rd as a quantile
of artificial probability distribution constructed by G-C parametrized by the first four statistical
moment obtained by PCE and iii) combination of G-C expansion of R and Bayesian updating of
input parameters.

Figure 2. Design values of resistance obtained by semi-probabilistic approach determined by the described
methods together with corresponding PDFs.

Bayesian updating is performed using artificially generated data: 20 experiments of concrete
specimens. Note that artificially generated data have realistic CoVs of material parameters, which
were identified in the previous experimental campaigns (Slowik et al. 2021). Prior distribution of
material characteristic was assumed to be Uniform and likelihood distribution is selected accord-
ing to Tab. 1, i.e. distributions provided in codes. Obtained results can be found in Fig. 3: each
row corresponds to a specific material characteristic, the first column shows estimation of mean
value and the second column shows estimation of standard deviation. Both columns, the first and
second, show also prior and posterior distribution identified by Bayesian approach. Vertical solid
lines corresponds to values assumed by codes, obtained directly from experiments by statistical
processing and the Bayesian estimation identified as a mean value of posterior distribution. The
very last column shows 5000 samples used in MCMC for estimation of posterior distributions.
Note that the identified values are significantly different in comparison to recommended values
by codes, but this is dependent on real-life experimental results.



Figure 3. Bayesian estimation of mean µ and standard deviation σ of concrete material characteristics.
Solid vertical lines show values determined by codes, experiments and Bayesian approach.

Once the PCE was created, it was possible to analytically derive statistical moments used for
Lognormal (first two statistical moments) and G-C expansion (first four statistical moments). The
difference between these two design values (corresponding to the identical percentile) is caused
by higher statistical moments. Further, the created PCE was employed as computationally cheap
surrogate model for crude Monte Carlo simulation with 106 realizations of input random variables
identified by Bayesian approach. So Bayes G-C expansion was based on estimation of first four
statistical moments needed for Gram-Charlier expansion by Monte Carlo simulation. Comparison
of identified PDFs together with determined design values of resistance Rd can be found in 4.

4 CONCLUSIONS

The paper described the advanced semi-probabilistic methodology based on G-C and PCE for
estimation of higher statistical moments and an approximation of probability distribution of struc-
tural resistance. Additionally, estimation was further improved by Bayesian estimation of input
random variables combining likelihood distributions from codes with material experiments. The
whole methodology was applied for an estimation of design value of resistance of existing post-
tensioned concrete bridge. It can be seen from comparison of determined design values, that
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Figure 4. Design values of resistance obtained by semi-probabilistic approach determined by the described
methods together with corresponding PDFs.

is beneficial to include additional information on structural parameters (Bayesian approach) as
well as higher statistical moments (G-C expansion). Methodology was shown using concrete
bridge example, exploiting additional experimental data and Bayesian approach resulted in less
conservative design value here.
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Novák, D., Vořechovský, M. & Teplý, B. 2014. FReET: Software for the statistical and reliability analysis
of engineering problems and FReET-D: Degradation module. Advances in Engineering Software 72,
179-192.



Novák, L. 2022. On distribution-based global sensitivity analysis by polynomial chaos expansion. Comput-
ers & Structures 267: 106808. DOI: 10.1016/j.compstruc.2022.106808

Novák, L. & Novák, D. 2018. Polynomial chaos expansion for surrogate modelling: Theory and software.
Beton- und Stahlbetonbau 113: 27–32. DOI: 10.1002/best.201800048

Novák, L. & Novák, D. 2020. On Taylor Series Expansion for Statistical Moments of Functions of Corre-
lated Random Variables. Symmetry 12(8): 1379. DOI: 10.3390/sym12081379

Novák, L. & Novák, D. 2021. Estimation of coefficient of variation for structural analysis: The correlation
interval approach. Structural Safety 92: 102101. DOI: 10.1016/j.strusafe.2021.102101

Novák, L.; Červenka, J.; Červenka, V.; Novák, D. & Sýkora, M. 2022. Comparison of advanced semi-
probabilistic methods for design and assessment of concrete structures. Structural Concrete. DOI:
10.1002/suco.202200179

Olivier, A.; Giovanis D.G; Aakash, B.S.; Chauhan M.; Vandanapu L. & Shields, M. D. 2020. UQpy: A
general purpose Python package and development environment for uncertainty quantification. Journal of
Computational Science 47: 101204. DOI: 10.1016/j.jocs.2020.101204.

Schlune, H.; Plos, M. & Gylltoft, K. 2011. Safety formats for nonlinear analysis tested on concrete beams
subjected to shear forces and bending moments. Engineering Structures 33 (8): 2350 - 2356.

Slowik, O; Novák, D.; Novák, L. & Strauss, A. 2021. Stochastic modelling and assessment of long-
span precast prestressed concrete elements failing in shear. Engineering Structures 228: 111500. DOI:
10.1016/j.engstruct.2020.111500
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